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The fast Fourier transform was utilized to examine the behavior of mathematical, 
generated, and natural sound waves in frequency space. Using a mathematical sine wave, 
it was determined the linewidth of the fundamental frequency decreases as the number 
of cycles and time range of the original wave increases. Analysis of a sine and square wave 
revealed that harmonics above the fundamental frequency change the sound quality. 
Two tuning forks of the same note played together produced a beat frequency of 0.681 ± 
0.002 Hz. The timbre of a whistle as well as the vowel sounds “O” and “E” were compared.  
The harmonics of a guitar and piano were analyzed and revealed that the piano had 9 
harmonics of higher relative amplitude while the guitar had 4 harmonics with only one of 
high relative amplitude. The harmonic frequencies were determined to change the timbre 
and sound quality of a note. 

 

I.  INTRODUCTION 
 

The purpose of this experiment was to practice and utilize the fast Fourier transform (FFT) to analyze 
mathematical waves and to explore the properties of harmonics and fundamental frequencies in natural 
sound waves. A sound wave is produced by creating pulses of high and low density air particles using high 
and low pressure. When measuring a sound wave, most instruments record the intensity of the wave over 
time. However, it can be valuable to analyze the intensity of the wave with respect to its frequency. To 
transform a wave from time space to frequency space, a Fourier transform can be utilized. The integral 
form of the Fourier transform is given by Equation 1: 
 

𝐵(𝑓) =  ∫ 𝐴(𝑡)𝑒−𝑖2𝜋𝑓𝑡𝑑𝑡
∞

−∞
    Eq. (1) 

 
Where B(f) is the transformation of function A(t) in frequency space, A(t) is a function in time space, i is 
the imaginary number, f is the frequency, and t is time. However, most software programs utilize a 
modified version of the Fourier transform called the fast Fourier transform. If the number of points is 
equal to 2n, such as 2048, the FFT can be calculated and scaled using Equation 2: 
 

𝛿𝑓 =
1

𝛥𝑡
      Eq. (2) 

 
Where δf is the change in frequency between points and Δt is the total range of the time axis. The 
produced FFT graph is mirrored along the x-axis. When the FFT of a wave is computed, a peak intensity 
will be shown at the fundamental frequency of the wave. Some waves have harmonics, which will appear 
as smaller-amplitude peaks in the FFT graph.  
 

II. APPARATUS 
 
The apparatus consisted of the following: 

• Radioshack microphone 3303043 
• Preamplifier, Rainbow Labs AA-1 
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• Tektronix TBS 1052B Digital Oscilloscope 
• Altec Lansing Speaker  
• Cenco tuning forks, A and C 
• Sargent Welsh Tuning forks, A and C 
• Instek Function Generator GFG-82198 
• Guitar 
• Electric piano 
• Microphone 
• FFT Software (Excel, MATLAB) 

 

III. PROCEDURES AND RESULTS  
 
A. Performing Mathematical FFT 
 
In this section, the FFT would be applied to a perfect 
sine wave to better understand the properties of the 
transform. The sine wave studied in this section is 
summarized by Equation 3: 
 

𝑦(𝑡) =  sin(2𝜋 ∗ 100𝑡)  Eq. (3) 
 
According to this structure of sine wave, the 
fundamental frequency is expected to be around 100 
Hz. To begin, the sine wave was plotted from 0 to 0.1 
seconds using 2048 points in MATLAB. The FFT with 
a Hamming filter was applied to the graph and scaled 
according to Equation 2. The sine wave and its 
transform are displayed in Figure 1. The FFT revealed 
a fundamental frequency at 100 Hz with an 
amplitude of 102.5 (units). The full width at half 
maximum was measured to be 10 Hz. The full range 
of frequency on the FFT graph was 1024 Hz. 
 
Next, the same sine wave was plotted over a longer 
period of time, 0 to 1.0 seconds. The FFT was 
computed as before and the frequency axis adjusted 
to focus upon the fundamental frequency. As before, 
the fundamental frequency was observed at 100 Hz 
and there were no harmonics. However, the 
amplitude of the fundamental frequency was 1020 
(units). The full width at half maximum was 
measured to be 1 Hz. The full range of frequencies on 
the FFT graph was once again 1024 Hz.  
 
The two graphs were compared. For the shorter sine 
wave from 0 to 0.1 seconds, 10 cycles of the 
waveform were recorded. For the longer wave from 

Fig. 1. Sine Wave in time space and frequency 
space, with frequency axis adjusted to focus 
on the fundamental frequency peak. 

Fig. 2. Sine wave in time space and frequency 
space, with frequency axis adjusted to focus 
on the fundamental frequency peak, for 
longer time range.  
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0 to 1.0 seconds, 100 cycles were recorded. The FFTs 
of the two waveforms are graphed together in Figure 
3. This experiment demonstrated that as the number 
of cycles increases, the range of frequency remains 
constant. However, the amplitude of the frequency 
peaks increases as cycles increase and with the 
length of time recorded. The linewidth, conversely, 
decreases as the time interval increases. From these 
relationships, it can be concluded that high precision 
FFT requires a high number of collected cycles, and 
large frequency range FFT requires a longer time 
interval.  
 
B. Analyzing Sine and Square Waves with Function 
Generator 
 
The next section of the experiment analyzed the FFT 
of a sine and square wave generated by a function 
generator. To begin, the function generator was 
connected to the Channel 1 of the oscilloscope and 
both devices were turned on. The function generator 
was set to produce a 1 kHz sine wave. Trigger and 
horizontal scale was adjusted on the oscilloscope to 
ensure that the wave was not being under-sampled 
and a consistent, constant waveform was visible. 
Data from this waveform was captured and saved for 
analysis. The number of points was truncated to 2048 
to allow for the software to compute the FFT. The 
data was imported to MATLAB and the FFT 
computed. The resulting wave is shown in Figure 4. 
 
The peak frequency of the sine wave was 977 Hz, 
with an amplitude of 638.7 V/s and a linewidth of 
244.1 Hz. There were no peaks beside the 
fundamental frequency of the wave. 
 
Next, a 1kHz square wave was generated and 
recorded as before. The resulting wave and its 
transform are shown by Figure 5. 
 
The peak frequency of the square wave was 977 Hz 
with an amplitude of 849.9 V/s. The linewidth of the 
fundamental frequency was 244.1 Hz. Unlike the sine 
wave, multiple harmonic frequencies were recorded 
by the FFT. The harmonic peaks occurred around 3 
kHz, 5 kHz, 7 kHz, and so on with decreasing 
amplitude. These small harmonic peaks continue at 
these increments along the entire frequency range. 

 
Fig. 3. FFT of the same sine wave over 
different time spans, where blue corresponds 
to 0.1 s and orange corresponds to 1.0 s.  

 
Fig. 4. Function generator sine wave in time 
space and frequency space. 

 
Fig. 5. Function generator square wave in time 
space and frequency space. 
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The function generator and oscilloscope were connected to a speaker. Using the same settings as before, 
a 1 kHz sine wave was played. It had steady, single-note sound. Next, a 1 kHz square wave was played. It 
had a fuller sound with harmonics creating a richer timbre. This aligns with the behavior for the sine and 
square wave recorded by the FFT. 
 
C. Tuning Forks, Whistle, and Human Voice 
 
The next section of the experiment was dedicated to 
recording and analyzing real-world sounds. To begin, 
two tuning forks of the same pitch were selected. For 
this experiment, the note C was selected. The 
oscilloscope time scale was set to a time base around 
0.5 seconds per square. A microphone was 
connected to Channel 1 of the oscilloscope and held 
next to the tuning forks as they were both played 
simultaneously. The recorded waveform was saved 
to Excel and is showed by Figure 6.   
 
The phenomenon recorded through this process is beating. When two notes of very close frequency are 
played together, their sound waves interfere. Since they have very similar frequencies and periods, they 
oscillate between constructive interference and destructive interference. The peaks of the beats occur 
when the two waves constructively interfere, which is to say that they combine to form a peak with a 
larger amplitude than either of the individual waves. However, the waves also destructively interfere 
when they are out of phase, resulting in their amplitudes cancelling out to produce a near-zero amplitude 
in the combined waveform [1]. From this phenomenon, beats are observed as shown in Figure 6.  
 
The frequency of the combined waveform shown in Figure 6 was measured to be 0.681 ± 0.002 Hz. This 
frequency describes the difference in frequencies between the two waveforms [1]. In other words, the 
two tuning forks used in this experiment were 0.681 ± 0.002 Hz apart. This discrepancy could be due to 
the manufacturing standards of the companies that developed the tuning forks. 
 
Next, the waveform of a whistle would be analyzed. 
The oscilloscope scale was set to a time base of 0.025 
seconds per square. Using the microphone connected 
to Channel 1 of the scope, a lab member whistled into 
the microphone and the waveform was saved for 
analysis. The waveform and its FFT are shown by 
Figure 7.  
 
The fundamental frequency of the whistle was 1353 
Hz with an amplitude of 34.14 V/s. There are irregular 
harmonics in the lower frequency range. 
 
If two people’s whistles were compared, there would 
be differences in the timbre that would translate to a 
different arrangement of harmonics in frequency 
space. Instead of lower harmonics as recorded in this 

 
Fig. 6. Beats observed when two tuning forks 
of same pitch were played simultaneously. 

 
Fig. 7. Recorded audio wave and FFT of a 
human whistle. 
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lab, someone may be able to produce whistles with harmonics at a frequency higher than the fundamental 
frequency. As everyone’s anatomy varies slightly, the whistle each individual can produce is unique in 
timbre and therefore would have a different audio signature in frequency space.  
 
Whistling works by using the shape of the mouth to 
produce pulses of high and low pressure. Air is 
pushed towards the lip, causing a buildup of air 
molecules that create a high-pressure region. When 
the air is allowed to release, the molecules have a 
higher velocity than the stagnant air around it, 
causing a ripple of energy that travels as a sound 
wave [2].  
 
Finally, a human voice speaking a vowel sound was 
recorded using the microphone connected to 
Channel 1 of the oscilloscope. The oscilloscope time 
base was kept at 0.025 seconds per square. The 
vowels “O” and “E” was recorded and analyzed in 
MATLAB. Figure 8 shows the audio wave analysis for 
the vowel “O” while Figure 9 shows the audio wave 
for the vowel “E”. 
 
For the vowel “O”, the fundamental frequency was 
recorded to be 244.3 Hz with an amplitude of 28.5 
V/s. There were several small harmonics, measured 
at 439.7 Hz, 683.9 Hz, and 928.2 Hz.  
 
For the vowel “E”, the fundamental frequency was 
195.4 Hz with an amplitude of 21 V/s. There were 
several more harmonics measured at 390.8 Hz, 2443 
Hz, 2638 Hz, 3273 Hz, 3468 Hz, 3664 Hz, 3859 Hz, and 
finally 4055 Hz.  
 
Compared to the FFT for the vowel O, the FFT for the 
vowel E had many more harmonics. Although this 
could not be quantitatively measured, the sounds 
with more harmonics were consistently noted to have a richer timbre than those that were recorded with 
fewer harmonics. A qualitative correlation was suggested between the quality of sound and the number 
of harmonics of the audio wave in frequency space.  
 
D. Harmonics with Guitar and Electric Keyboard 
 
The last section of this experiment studied the harmonics produced by instruments, in this case a guitar 
and an electric keyboard. Similar to the previous setup, the microphone was connected to Channel 1 of 
the oscilloscope. A tuned note, in the case a D flat, was played with the guitar into the microphone and 
saved from the oscilloscope. The resulting audio wave is shown in Figure 10.  
 

 
Fig. 8. Recorded audio of a human speaking 
the vowel sound “O” and its respective FFT. 

 
Fig. 9. Recorded audio of a human speaking 
the vowel sound “E” and its respective FFT. 
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The waveform from the guitar had a fundamental 
frequency of 139.3 Hz. Harmonics were measured at 
278.456 Hz, 417.684 Hz, 556.913 Hz, and 837.811 Hz. 
The harmonic number, which describes the multiple 
of the fundamental frequency that describes the 
harmonic, as well as their amplitudes are summarized 
in Table I. The fundamental frequency is bolded for 
clarification. 
 

Table I: Harmonic Analysis for Guitar 

Frequency (Hz) Amplitude (V/s) N 

139.228 35.2082 1 

278.456 3.44235 2 

417.684 16.1106 3 

556.913 3.11617 4 

837.811 1.21183 6 

 
The third harmonic had the largest amplitude 
compared to the others.  
 
Next, an electric piano played the same note, D flat, 
into the microphone. The audio wave was saved from 
the oscilloscope and the resulting waveform and its 
transform are shown in Figure 11.  
 
The electric piano had a fundamental frequency of 
276.014 Hz and almost ten harmonics. The harmonics 
and their respective amplitudes and number are 
recorded in Table II.  
 

Table II: Harmonic Analysis for Piano 

Frequency (Hz) Amplitude (V/s) N 

276.014 17.3536 1 

554.47 10.5866 2 

830.484 9.431 3 

1106.5 4.9043 4 

1384.95 7.8707 5 

1660.97 1.34016 6 

1936.98 10.2996 7 

2215.44 1.71941 8 

2491.45 5.5137 9 

 
The piano sound had 9 audible harmonics in total, producing a 
very clear, high-quality sound.  
 
Next, a plot describing the relative amplitudes of the harmonics 
for the two instruments was generated, as shown in Figure 12. 

 
Fig. 10. Recorded audio wave of a guitar 
playing a D flat. 

 
Fig. 11. Recorded audio wave of an electric 
piano playing a D flat. 

 
Fig. 12. Recorded audio wave of an 
electric piano playing a D flat. 
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The most intense peak of each instrument was scaled to 100 to ease comparison, such that the amplitudes 
were presented as a percentage of the maximum amplitude recorded for each instrument. From this plot, 
it is clear that the piano had more harmonics with a higher relative amplitude, whereas the guitar only 
had one harmonic with a relative amplitude larger than 50%. These differences in the harmonic behavior 
of their waveforms helps to characterize the differences in timbre and sound observed between different 
musical instruments.  
 

IV. SUMMARY 
 

This experiment yielded valuable insights into the nature of the fast Fourier transform and how sound 
quality relates to harmonics. The first section of this experiment analyzed a mathematical sine wave to 
study the behavior of the fast Fourier transform. It was determined that when a longer time frame of a 
wave and therefore more cycles of the wave are recorded, the linewidth of the fundamental frequency 
peaks decreases. However, the amplitude of the frequency peaks will increase with the length of time and 
number of cycles recorded in time space. From this data, it was determined that the precision of an FFT 
can increase if data is recorded with more cycles or over a longer period of time. 
 
The next section compared the behavior of a sine wave and a square wave both set at the same frequency 
1 kHz. From the FFT analysis, it was determined that the square wave had a set of harmonics that built 
upon the fundamental frequency whereas the sine wave did not. The audio of the square wave indicated 
that the presence of harmonics can alter the timbre of sound and therefore improve the richness and 
sound quality of the note.  
 
Next, real-world sounds were recorded. The beat phenomenon was successfully demonstrated with two 
tuning forks. The beat frequency was 0.681 ± 0.002 Hz, indicating that the two tuning forks differed in 
played frequency by 0.681 ± 0.002 Hz. The audio wave of the whistle had uneven, irregular harmonics 
below the fundamental frequency. The audio of two vowel sounds, “E” and “O” were compared. It was 
determined that the “E” sound had more harmonics as well as a steadier sound. These results again 
indicated that the presence of harmonics affects the timbre and sound quality of a note. 
 
Finally, the harmonic behavior of a guitar and electric piano playing D flat were compared. The piano 
had 9 harmonics with higher relative amplitudes, whereas the guitar had 4 measured harmonics and 
only the third harmonic had a relative amplitude more than 50% of the amplitude of the fundamental 
frequency. Overall, this experiment demonstrated the importance harmonics in the timbre and sound 
quality of a played note, which helps to differentiate the sound of different instruments. 
 
There were several sources of error in this experiment. The most prevalent was the background noise of 
the lab space where this experiment was conducted. Other lab groups were working in the same space 
with no sound insulation, and so background noise was likely picked up by the microphone and would 
have affected the baseline for results. Attempts were made when recording data to only record when 
the room was relatively quiet, but this does not eliminate the effect of background noise entirely. A 
source of error for the comparison of the two instruments was the tuning. The guitar was tuned to a 
fingered D flat note using an app. However, it should be noted that this tuning was relative to A 440 and 
the app did not provide a precise margin of error. It was possible that the D flat played by the piano and 
the guitar were not equal in frequency. Overall, the results could be improved by adding sound proofing 
to the space and using accurately tuned instruments.  
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